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Orientational phase transitions in the hexagonal phase
of a diblock copolymer melt under shear flow

A. N. Morozov, A. V. Zvelindovsky, and J. G. E. M. Fraaije
Faculty of Mathematics and Natural Sciences, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherland

~Received 7 September 1999!

We generalize the earlier theory by Fredrickson@J. Rheol.38, 1045 ~1994!# to study the orientational
behavior of the hexagonal phase of diblock copolymer melt subjected to steady shear flow. We use symmetry
arguments to show that the orientational ordering in the hexagonal phase is a much weaker effect than in the
lamellae. We predict the parallel orientation to be stable at low and the perpendicular orientation at high shear
rates. Our analysis reproduces the experimental results by Tepeet al. @Macromolecules28, 3008~1995!# and
explains the difficulties in experimental observation of the different orientations in the hexagonal phase.

PACS number~s!: 61.25.Hq, 64.60.Ht, 64.70.2p, 47.20.Hw
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I. INTRODUCTION

Polymeric liquids subjected to shear flow demonstrat
very peculiar phase behavior. Their phase diagrams not
contain regions of stability of the different symmetry typ
~lamellae, hexagonally packed cylinders, and so on!, but also
these regions have an internal structure. Application of sh
breaks the rotational symmetry selecting the preferable di
tion. Thus, at given external parameters~temperature and
shear rate! a certain orientation of the symmetry pattern w
respect to the selected direction is more stable than the o
@1#.

Experimentally this phenomena was first observed for
lamellar phase@2#. In this work a microphase separate
poly~ethylene-propylene!-poly~ethylethylene! diblock co-
polymer melt was subjected to an oscillatory shear. Near
order-disorder transition~ODT! the lamellae have their nor
mal parallel to the velocity gradient~the parallel orientation!
at low shear frequencies, while at high shear frequencies
lamellae have their normal parallel to the vorticity directi
of the shear flow~the perpendicular orientation!. At lower
temperatures the parallel orientation is always the m
stable one.

The first theoretical attempt to study the orientation
phase transition was by Cates and Milner@3#. They consid-
ered the equation of motion for the order parameter wit
coupling of applied steady shear to the composition fluct
tions. They found that flow completely changes the fluct
tion spectrum. As a result, the fluctuations of the order
rameter are suppressed and the ODT temperature is ra
The authors suggested that the perpendicular orientatio
stable near the ODT since the composition fluctuations w
wave vectors normal to both the velocity and the veloc
gradient are the least affected by shear.

Later Fredrickson has shown that the angle dependenc
the fourth order vertex function is crucial for construction
a realistic nonequilibrium phase diagram. Within this fram
work Fredrickson reproduced the experimental observa
by Koppi et al. @2#. The theory fails to describe the selectio
of the parallel orientation at higher frequencies@4#.

In the present paper we generalize the Fredrickson the
to describe the orientational phase transitions in the hexa
PRE 611063-651X/2000/61~4!/4125~8!/$15.00
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nal phase of a diblock copolymer melt subjected to ste
simple shear flow. The symmetry pattern of this phase c
sists of hexagonally packed cylinders made up of blocks
one type immersed in the surroundings of the other blo
~see Fig. 1!. In equilibrium this phase appears in betwe
lamellae and body-centered cubic phase@5,6#. The experi-
ments under shear flow show an analogy with the orien
tional behavior of the lamellar phase@7–9#. In slow flow the
symmetry pattern has ‘‘2 dots up,’’ while in the faster flo
the ‘‘1 dot up’’ orientation appears~see Fig. 2!. In order to
keep universality we call them the parallel and the perp
dicular orientations, respectively. There have been many
servations of the ordering of the hexagonal phase subje
to shear flow@7–9#. Recently, Tepeet al. have varied tem-
perature and shear rate and observed both orientations o
hexagonal pattern in a nonsymmetric polyethylen
poly~ethylenepropylene! ~PE-PEP! diblock copolymer melt.
We schematically present their results in Fig. 2. Our goa
to reproduce this dynamical phase diagram theoretically.

We start with a speculative analogy with lamellae. Bo
orientations of the hexagonal pattern could be considere
parallel lamellae with different interlamellar distances~see
Fig. 3!. High shear squeezes the pattern and the lame
with the smallest interlayer distance are favorable. In v
slow shear the intermolecular forces resulting in microph
separation will play the predominant role and lamellae w
the biggest interlayer distance are stable. Such simple
soning already reproduces the main features of Fig. 2.

We proceed with more exact and motivated analysis.

FIG. 1. The molecular structure of a cylinder.
4125 © 2000 The American Physical Society
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Sec. II we formulate a dynamical model and study its eq
librium limit. In Secs. III and IV we apply the methods o
Fredrickson@1# to analyze the high-shear and low-shear b
havior. In the conclusion we compare the orientational
havior of the hexagonal and lamellar phases and explain
origin of difficulties in experimental study of this behavio

II. DYNAMIC EQUATIONS

Let us consider a diblock copolymer melt. The starti
point of our analysis is the dynamic equation for an ord
parameterc(r ), which we choose to be a deviation of a loc
density of monomers of one block from its average value@5#.
In the present work we use the Fokker-Planck equation
an incompressible block copolymer melt@1,3,10#:

]P

]t
@c,t#5E

p

d

dc~p! FmS d

dc~2p!
1

dH

dc~2p! D
2D px

]

]py
c~p!GP@c,t#, ~2.1!

whereH@c# is the Landau-Ginzburg Hamiltonian

H@c#5
1

2Eq
@t1~q2q0!2#c~q!c~2q!

1
1

3!Eq1

E
q2

E
q3

j~q1 ,q2 ,q3!c~q1!c~q2!c~q3!

1
1

4!Eq1

E
q2

E
q3

E
q4

l~q1 ,q2 ,q3 ,q4!c~q1!

3c~q2!c~q3!c~q4! ~2.2!

andm is the Onsager mobility coefficient, which we assum
to be constant~see Refs.@1,11,12# for discussion!.

For a certain configuration of the fieldc(q), the function
P@c# gives the probability of its realizations. In the statio

FIG. 2. Schematic dynamical phase diagram of hexagonal p
under shear flow: the parallel (f50) and perpendicular (f
5p/6) orientations@see Eq.~2.11!#.

FIG. 3. Conventional subdivision of hexagonal pattern in lam
lar layers.
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ary state,P@c# reduces to the Boltzmann distributionP
;exp(2H@c#) in the limit D50 @13#.

In the derivation of the Eq.~2.1! we assumed the standar
flow geometryv5D y ex . It means that we ignored any a
teration of the velocity profile caused by the internal stru
ture of the melt. Fredrickson has showed@1# that by taking
into account different viscosities of the two blocks one c
approximate the real velocity profile by the same functio
form v5Deff y ex . HereDeff is a renormalized shear rate

Deff5D@11~corrections!#. ~2.3!

In lamellar phase at high shear, the lamellae are perp
dicular at high temperatures, and parallel at low tempe
tures. Fredrickson has shown that the orientation-depen
hydrodynamic corrections are needed to explain this tra
tion. In hexagonal phase such an effect at high shear is
known, and we postpone hydrodynamic corrections to fut
analysis. Here we approximateDeff by D.

We take the first and the second cumulants to obtain
equations for

C~p!5^c~p!&,
~2.4!

S~p!5^c~p!c~2p!&2^c~p!&^c~2p!&.

The resulting equations can be greatly simplified if we u
the principle-harmonic approximation for the mean dens
profile:

C~p!5(
i 51

n

ai@dp,q0n( i )1dp,2q0n( i )#, ~2.5!

where the set of vectorsn( i ) determine the lattice symmetry
Equation~2.5! says that all structures in the system have
same typical size;1/q0, whereq0 corresponds to the pri
mary peak of the structure factorS(p) @see the first term in
Eq. ~2.2!#.

For the steady state the equations transform to

hi5tai1Ai1
1

2
aiE

q
l~q0n( i ),2q0n( i ),q,2q!S~q!1Bi

~2.6!

152
D

2m
px

]

]py
S~p!1S~p!F t1~p2q0!2

1
1

2Eq
l~p,q,2p,2q!S~q!1CG , ~2.7!

where we defined the structure constants

Ai5
1

2Eq1

E
q2

j~2q0n( i ),q1 ,q2!C~q1!C~q2!,

Bi5
1

3!Eq1

E
q2

E
q3

l~2q0n( i ),q1 ,q2 ,q3!C~q1!C~q2!C~q3!,

~2.8!

C5
1

2Eq
l~p,q,2p,2q!C~q!C~2q!.
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In Eq. ~2.6! we introduced artificial external fieldshi .
This is equivalent to an introduction of the additional term
the Hamiltonian Hext52*qh(q)c(2q), h(q)
5( i 51

n hi@dq,q0n( i )1dq,2q0n( i )#, which describes the interac

tion with an external fieldh(q). The fieldshi will allow us to
construct a potentialF governing the dynamics. In equilib
rium the potentialF has the meaning of the free energy
the system. Thus, by introducing the fieldshi we obtain an
analytic continuation of the free energy to the dynamic c
@1#. This is possible because our model is conservative@14#.

As our last simplification we introduce an approximati
for the vertex functionsj andl. Since we use the principle
harmonic approximation in Eq.~2.5!, we assume that al
wave vectors have the same modulusuqu5q0. Moreover,
following Refs. @15–17#, we take into account the wea
angle dependence in the fourth-order vertex functionl, so

j~q1 ,q2 ,q3!5jd~ q̂11q̂21q̂3!, ~2.9!

l~q1 ,q2 ,2q1 ,2q2!5l@12b~ q̂1•q̂2!2#, ~2.10!

b!1,

whereq̂5q/q denotes the unit vector in the direction ofq.
To make the general equations~2.6! and~2.7! specific for

the hexagonal phase one needs to calculate the structure
stants~2.8! taking into account the symmetry of the phas
The average density profile for the hexagonally packed
inders is given by Eq.~2.5!, where the basis vectorsn( i ) are

n(1)5$0,cosf,sinf%,

n(2)5
1

2
$0,2cosf2A3sinf,A3cosf2sinf%,

~2.11!

n(3)5
1

2
$0,2cosf1A3sinf,2A3cosf2sinf%.

The anglef defines the orientation of the hexagonal patte
The casef50 corresponds to the parallel orientation in re
space~see Fig. 2!.

Using Eqs.~2.8!, ~2.11! and~2.9!, ~2.10! we obtain for the
structure constants

Ai5jakal ,

Bi5ailFak
2S 12

b

4 D1al
2S 12

b

4 D1
1

2
ai

2~12b!G ,
~2.12!

C5l$a1
2@12b~ p̂•n(1)!2#1a2

2@12b~ p̂•n(2)!2#

1a3
2@12b~ p̂•n(3)!2#%,

iÞkÞ l .

We introduce the notation

s~ p̂!5
l

2Eq
S~q!@12b~ p̂•q̂!2#, ~2.13!
e

on-
.
l-

.
l

r 2p̂•eI•p̂5t1s~ p̂!1l(
i 51

3

ai
2@12b~ p̂•n( i )!2#,

~2.14!

S0~p!5@r 2p̂•eI•p̂1~p2q0!2#21, ~2.15!

and rewrite the steady-state equations in the final form

2
D

2m
px

]

]py
S~p!1S~p!S0

21~p!51, ~2.16!

hi5~r 2n̂( i )
•eI•n̂( i )!ai1jakal2

1

2
lai

3~12b!,

~2.17!

iÞkÞ l .

Notation~2.13!–~2.15! has a clear physical meaning. Th
fluctuation integral~2.13! takes into account the fluctuation
of the order parameter@18# and renormalizes the temperatu
in the system. Because of the angle-dependence of
fourth-order vertex functionl @Eq. 2.10!#, the renormalized
temperature also has a angle dependence. Expanding it t
first order in b @one can easily check that the anisotro
tensorei j is of orderO(b)], we extract this angle depen
dence and get Eq.~2.14!, wherer denotes thep-independent
part of the renormalized temperature and2p̂•eI•p̂ adsorbs
the other terms. Finally,S0(p) is an equilibrium structure
factor, which in the limitb50 reduces to the one studied b
Brazovskii @18# and Fredrickson and Helfand@6#.

Equilibrium analysis. Equations ~2.16! and ~2.17! de-
scribe the behavior of the hexagonal phase at any shear
For the particular case (D50, b50) these equations wer
studied in a number of articles@6,12,18#. Before studying the
dynamics we want to show the influence of the angle dep
dence inl ~2.10! on the equilibrium phase behavior, so w
construct the free energy at equilibriumD50. Equation
~2.16! reads

S~p!5S0~p!5@r 2p̂•eI•p̂1~p2q0!2#21. ~2.18!

Performing the integration in Eq.~2.13! up to the first order
in b we get

s~ p̂![seq5
al

Ar
F12

1

3
b~ p̂•p̂!1

eii

6r G . ~2.19!

Hereeii denotes the trace of the anisotropy tensoreI. Sepa-
rating p̂-dependent terms ins(p̂) with the help of Eq.~2.14!
we obtain

r 5t1
al

Ar
1

al

6 r 3/2
eii 1l~a1

21a2
21a3

2!, ~2.20!

ei j 5
al

Ar

b

3
d i j 1bl@a1

2 ni
(1) nj

(1)1a2
2 ni

(2) nj
(2)1a3

2 ni
(3) nj

(3)#.

~2.21!

The equations of motion forai ~2.17! have a potential form
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hi5
1

2

]F

]ai
. ~2.22!

To integrate Eq.~2.22! one needs to take into account depe
dence ofr on ai and treat an integral of a composite functio

E
0

ai
dai~••• !5E

r0

r

dr
]ai

]r
~••• !, ~2.23!

where the Jacobian]ai /]r can be found from Eq.~2.20!, and
r 0 is a temperature at which the disordered phase loses
bility, given by Eq.~2.20! with a15a25a350. Integrating
Eq. ~2.22! we obtain the free energy

F5F81Fstr, ~2.24!

F85
r 22r 0

2

2l
1aS 12

b

2 D ~Ar 2Ar 0!

1
1

2
atbS 1

Ar
2

1

Ar 0
D 1

1

6
a2lbS 1

r
2

1

r 0
D ,

~2.25!

Fstr52
1

4
l~11b!~a1

41a2
41a3

4!12ja1a2a3

2
1

4
bl~a1

2a2
21a1

2a3
21a2

2a3
2!, ~2.26!

where we have separated terms determined by the stru
constants.

The amplitudesai that minimize the potentialF are
found by solving the set of equationshi50. Its most impor-
tant feature is thats does not depend on then( i ). Thus, the
resulting equations are isotropic with respect toai and the
solution has the forma15a25a35a.

To explore the stability region of the hexagonal phase
need to solve the resulting system of equations for gi
temperature and composition

r 5t1
al

Ar
1

~al!2

6r 2
b1

al2

2r 3/2
a2b13la2, ~2.27!

r 05t1
al

Ar 0

1
~al!2

6r 0
2

b, ~2.28!

r 2
1

3
b

al

Ar
2la2S 1

2
1b D1ja50, ~2.29!

F5F82
3

4
la4~112b!12ja3. ~2.30!

The calculation technique of Fredrickson and Helfand@6#
allows us to demonstrate the influence of theb terms on the
-

ta-

re

e
n

equilibrium phase diagram. In Figs. 4 and 5 we show that
approximation~2.10! results in a nonsignificant quantitativ
shift of values. The effect ofb on the equilibrium phase
diagram is tiny, but in the next section we will demonstra
that b is dominant in explaining the dynamical orientation
ordering.

III. STRONG-SHEAR BEHAVIOR

To study the orientational dynamics in the strong-sh
regime we need to solve Eqs.~2.16! and ~2.17! in the limit
D→`. In this case it is impossible to obtain a solution
Eq. ~2.16! as a perturbation series in 1/D. Instead, we use
approach developed by Cates and Milner@3#. One can apply
the RG methods@10# to find the asymptotic behavior of th
structure factorS(p,D→`)5S`(p). Then, at large shea
rates the structure factor can be approximated by interpo

FIG. 4. The spinodal temperature~solid line:b50, dashed line:
b50.5).

FIG. 5. The transition temperature between lamellae and cy
ders~solid line: b50, dashed line:b50.5).
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ing betweenS0(p) andS`(p). Cates and Milner introduced
the following approximation:

S21~p!5S0
21~p!1S`

21~p!

5r 2p•eI•p1~p2q0!21
1

c0
S Dupxpyu

m a1/2 D 2/3

,

~3.1!

where c05 1
3 (48p)1/3G( 1

3 ). To the leading order inD the
fluctuation integral is equal to@1#

s~ p̂!5~al!2/3D@ I 12b~ I 2p̂x
21I 2p̂y

21I 3p̂z
2!#, ~3.2!

where

D5
Ac0

~48p!1/3S D*

D D 1/3

, D* 5mlAa,

and

I 15

GS 1

2DGS 1

3D 2

2pGS 7

6D '2.2, I 25

GS 1

2DGS 1

3DGS 4

3D
2pGS 13

6 D '0.6,

I 35

GS 3

2DGS 1

3D 2

2pGS 13

6 D '0.9.

For the external fieldshi Eq. ~2.17! results in

hi5Ft1s~n( i )!1lAS 12
1

4
b D Gai

1jaaab2
1

2
lai

3S 11
1

2
b D , ~3.3!

where

A5a1
21a2

21a3
2 .

The potentialF is given by Eq.~2.22!. Unlike the equilib-
rium situation we do not have any problem with integrati
@Eq. ~3.3! does not depend on bothr andei j ], and the equa-
tion for the free energy is straightforward:

F5tA1(
j 51

3

s~n( j )!aj
21

1

2
lS 12

1

4
b DA212ja1a2a3

2
1

4
lS 11

1

2
b D (

j 51

3

aj
4 . ~3.4!

The amplitudesai are the solutions of the equations

hi50. ~3.5!

In the absence of the terms(n( j ))aj
2 these equations have

uniform solution a15a25a3. The presence of this term
breaks the symmetry of the equations and allows for
nonequal amplitudes. We construct the solutions of Eq.~3.5!
as a perturbation series in two small parametersD and b.
The highest order in the perturbation series for the am
tudes is determined by the following argument. Our goa
to obtain an angle-dependent free energy. This angle de
dence can only appear via various but symmetric comb
tions of the basis vectorsn( i ). Let us discuss an example:

ny
(1) 2x1ny

(2) 2x1ny
(3) 2x .

This combination is angle dependent ifx>3. One can easily
check that it is also true for the other symmetric combin
tions. The only way for such a combination to enter t
equation for the free energy is via a term such ass3, which
is proportional tob3D3. Thus, in what follows we keep
terms up toO(b3D3). Solving Eq.~3.3! for the amplitudes
and substituting them into Eq.~3.4!, we obtain

F5F01F1D1F2D
21F3D

3. ~3.6!

The coefficientsF i are given by

F05
22115~225x!x22~1210x!3/2

125

j4

l3
,

F15
3

25
I 1~11A1210x!2

j2a2/3

l4/3
,

F252
3

5
I 1

2S 11
1

A1210x
D ~a4l!1/3,

F35F2
I 1

3

~1210x!3/2
1~ I 32I 2!3

3b3
A1210x~12225x!127~1425x!

16~81x!3
cos 6fG S al

j D 2

.

Here we have introduced the dimensionless temperatux
5tl/j2 and kept only the leading terms inb for a given
order in D. The second term inF3 is the angle-dependen
contribution we were looking for.

The spinodal temperature is obtained from the conditi
Fut5ts

50. It reads

ts5ts
(0)1ts

(1)D1ts
(2)D21ts

(3)D3, ~3.7!

where

ts
(0)5

4

9~522b!

j2

l
,

ts
(1)52F I 12

1

2
b~ I 21I 3!G~al!2/3,

ts
(2)5

9b2~522b!2~ I 32I 2!2

64~1327b!

a4/3l7/3

j2
,
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ts
(3)52

81~ I 32I 2!3b3~522b!5

512~1327b!3 S al2

j2 D 2

cos 6f.

Finally, we calculate the transition temperature betwe
cylinders and lamellae. Up to the first order inD we obtain

t tr52
713A6

5

j2

l
1I 1~713A6!~al!2/3D. ~3.8!

Now we summarize our results. In the high-shear limit t
hexagonal phase is found to be stable in the tempera
range fromts to t tr ~see Fig. 6!. Here we suppose that hex
agonal phase is the first phase appearing at cooling d
from melt. If this is not a case, the temperature ran
(ts ,t tr) transforms to (t* ,t tr), where t* is a transition
temperature from a hypothetic~bcc, gyroid, . . .! to the hex-
agonal phase. The factor in front of cos 6f in the equation
for ts

(3) is negative. This means that the spinodal tempera
is higher for the orientation withf5p/6. Moreover, the
free-energy is minimal for this orientation for all values
temperature from the range (ts ,t tr). Thus we predict the
perpendicular orientation to be the only stable orientation
the high-shear limit.

We emphasize that the appearance of the angle de
dence in the free energy only in theO(b3D3) is not a coin-
cidence. It reflects the internal symmetry of the system. A
figure on plane can be oriented with respect to the partic
direction only if its shape deviates from circle. In oth
words, if one expands the figure’s shape into the plane wa
around circler (f)5R0@11(aneinf#, the interaction with a
selected direction will appear in the first nonzero order. F
hexagons it givesn53. Thenth order in the expansion cor
responds to the interaction betweenn different wave vectors.
Taking into account that the parameterb introduces the
parewise interaction between vectors@see Eq.~2.10!#, we
conclude that the angle-dependent terms in the free en
should be at leastO(b3). The role of the parameterD is
different. Shear breaks the rotational symmetry in the s
tem, stipulating the preferred~gradient! direction and allow-
ing for a discrimination between orientations. Thus t
angle-dependent terms in the free energy should be pro
tional at least to the lowest possible power ofD. This lowest
possible power is determined by the concrete form of
structure factorS(k). In Eq. ~3.2! b and D enter as a one

FIG. 6. Region of stability of the hexagonal phase in high sh
flow.
n

e
re

n
e

re

n

n-

y
ar

es

r

gy

s-

r-

e

combination. So, one would expect the free energy to
angle-dependent starting from theO(b3D3) order.

We illustrate the concept with the following example
which we calculate the free energy of systems with ot
rotational symmetry. We consider for the moment an art
cial phase which the average density is given by

C~k!5(
i 51

2

ai~dk,q0n( i )1dk,2q0n( i )!, ~3.9!

whereni are two vectors lying in the plane perpendicular
the velocity directionn(1)

•n(2)5cosu. We consider two
cases:~a! u5p/2, which describes square packed cylinde
and ~b! u5p/12, which describes highly nonsymmetric c
lindrical pattern. Calculating the structure constants~2.12!
and integrating Eq.~2.17! with the help of Eq.~3.2!, we
obtain for the free energies

Fu5p/252
2t2

3l
2

4I 1ta2/3

3l1/3
D

2F2I 12
3

4
~ I 32I 2!2b2 cos 4fGa4/3l1/3

3
D2,

~3.10!

Fu5p/1252
2t2

3l
1

ta2/3

3l1/3
DH 24I 11

b

6
$24~41A3!I 1

112~ I 21I 3!13~ I 22I 3!@~21A3!cos 2f

2sin 2f#%J . ~3.11!

In case~a! the structure deviates from a circle in the seco
order (a05a150, a2Þ0), while in case~b! already in the
first order. This givesb2 andb standing in Eqs.~3.10! and
~3.11! in front of the angle-dependent terms. Both cases h
the same power ofD asb because of Eq.~3.2!. In the next
section we shall see how a different expression for the fl
tuation integral will produce the different lowest possib
power ofD.

IV. WEAK-SHEAR BEHAVIOR

In this section we consider the other limitD→0. In this
case the solution of Eqs.~2.16! and ~2.17! only slightly de-
viates from the equilibrium one and we can construct a p
turbation theory with a small parameterD. Thus the structure
factor is given by the equation

S~p!5 (
n50

` S D

2m D n

S(n)~p!, S(n)~p!5FpxS0~p!
]

]py
Gn

S0~p!,

~4.1!

whereS0(p) is the equilibrium structure factor.
Following the conclusions of the previous section w

evaluateS(p) up to O(b3) and the lowest possible order i
D, which isO(D). However,S(1)(p) does not contribute to
the fluctuation integral. Therefore, we keepS(2)(p) in the
expression for the structure factor. Performing the integ

r



e

,

e

f

nt

dal

hat

le
-

pos-

nal
can
rst

nd
g.
and
We

the
are
ia-

PRE 61 4131ORIENTATIONAL PHASE TRANSITIONS IN THE . . .
tion in Eq. ~2.13! with S(p) given by Eq.~4.1! and using
~2.15! for S0(p) we obtain the fluctuation integral

s~ p̂!5seq~ p̂!2
p~al!3

24r 7/2 S D

D*
D 2

3$11b11b21•••%,

bi}O~b i !, ~4.2!

where

b15
1

2r
~3exx13eyy1ezz!1b

2p̂z
223

7
,

b25
3

8r 2
@2ei j eji 1eii ~3exx13eyy2ezz!#

2
b

3r F p̂iei j p̂ j1
1

2
eii 1~12 p̂z

2!~exx1eyy!2ezzp̂z
2G ,

seq~ p̂!5
al

Ar
F12

1

3
b1

eii

6r G1
al

10r 3/2F 1

4r
~eii

2 12ei j eji !

2
b

3
~eii 12p̂iei j p̂ j !G1•••,

andseq is an extension of Eq.~2.19! to the higher orders in
b. Here we assumed the summation over repeated indic

In Eq. ~4.2! and in what follows the terms ofO(b3) are
cumbersome and we do not present them here. However
did use them in our calculations.

The p-independent terms in Eq.~4.2! contribute to the
equation forr:

r 5t1lA1
al

Ar
R12S D

D*
D 2

~al!3p

24r 7/2
R2 , ~4.3!

where

R1511
eii

6r
1

1

40r 2
~eii

2 12ei j eji !1•••,

R2511
3exx13eyy1ezz

2r
13

eii ~3exx13eyy2ezz!12ei j eji

8r 2

1•••.

For the anisotropy tensor~4.2! together with Eq.~2.14!
gives a closed set of equations. Iterating them up toO(D2)
andO(b3) we obtain

ei j 5Ei j
(1)2S D

D*
D 2

~al!3p

24r 7/2
Ei j

(2)1•••, ~4.4!

where
s.

we

Ei j
(1)5bH al

3Ar
d i j 1l(

s51

3

as
2ni

(s)nj
(s)J 1b2H ~al!2

18r 2
d i j

1
al2

30r 3/2 (
s51

3

as
2@d i j 12ni

(s)nj
(s)~22d i j !#J 1•••,

Ei j
(2)5

b

7
$3d ixd jx13d iyd jy1d izd jz%1b2H al

105r 3/2
@59~d ixd jx

1d iyd jy!122d izd jz#1
l

6r (
s51

3

as
2@d i j 12ny

(s)2~d ixd jx

12d iyd jy!14ni
(s)nj

(s)~12d i j !#J 1•••.

Equations~4.3! and~4.4! are enough to construct the fre
energyF as a solution of Eq.~2.22!, wherehi , r, andei j are
given by ~2.17!, ~4.3!, and~4.4!, respectively. Integration o
Eq. ~2.22! using Eq.~2.23! leads to the following equation
for the free energy:

F5F2b3S D

D*
D 2

a4
3pa4l5

1280r 0
6

cos 6f, ~4.5!

wherea is the equilibrium amplitude given by Eqs.~2.29!
and ~2.27!. In Eq. ~4.5! F stands for the angle-independe
part of the free energy.

The spinodal temperaturets is given by

ts5t1b3S D

D*
D 2

a4
pa4l6

640r 0
7

cos 6f, ~4.6!

wheret includes the angle-independent terms. The spino
temperature is maximal forf50. At the same time, the free
energy is minimal for the same orientation. It means t
only the parallel orientation is stable under low shear.

To finish our symmetry analysis we note that in princip
the fluctuation integral~4.2! contains all possible combina
tions of powers ofb and D2. According to the symmetry
arguments the angle dependence appears in the lowest
sible order inD ~which isD2 in this case! and the third order
in b. This is in agreement with Eqs.~4.5! and ~4.6!.

V. CONCLUSIONS

In the present paper we have shown how the orientatio
behavior of the hexagonal phase under simple shear flow
be described in the framework of the dynamical model fi
developed by Fredrickson for the lamellae@1#. In this model
the angle-dependence of the fourth order vertex functionl
@see Eq.~2.10!# plays a crucial role, although it is of no
importance in equilibrium~see Sec. II for details!. The pa-
rameterb introduces the interaction between structure a
shear flow and allows for the rotational symmetry breakin
The character of the interaction depends on the shear rate
the resulting phase diagram has a complex structure.
predict the parallel orientation to be stable at low and
perpendicular orientation at high shear rates. Our results
in agreement with the experimental dynamical phase d
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gram~Fig. 2! for the PE-PEP system@7#. Our analysis shows
that experimental study of the hexagonal phase orientatio
actually very difficult to perform. Because of the symme
arguments, the difference in the free energies of the diffe
orientationsDF5F'2F i is proportional to

DF55 b3
D*

D
, D→`,

b3S D

D*
D 2

, D→0.

This difference is extremely small~compare withDF}b for
lamellae @1#! and a particular orientation is only slightl
more stable than the other one. Some crude experime
by-effects ~such as the ordering influence of the sam
walls! can easily suppress the pure orientational behavior
discussed.

In comparison with the work@1# we ignored the hydrody-
namic corrections to the effective shear rateDeff @see Eq.
~2.27! in Ref. @1##. These corrections are responsible for t
'→i transition in the lamellar phase under strong she
.

s

.

is
is

nt

tal

e

r.

Taken into account they would probably lead to the sa
transition in the hexagonal phase. However, this is not
easy task because one should keep terms up toO(b3D3) in
order to have an angle-dependent value.

Another remaining problem concerns the stability
transversal cylinders, i.e., cylinders with their axis orient
not in the direction of flow@4#. Our model cannot describ
stability of the transversal orientation@3#. Another approach
should be developed to complete our study.
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